Search results for "Algebraic number"
showing 10 items of 169 documents
Une structure o-minimale sans décomposition cellulaire
2008
Resume Nous construisons une extension o-minimale du corps des nombres reels qui n'admet pas la propriete de decomposition cellulaire en classe C ∞ . Pour citer cet article : O. Le Gal, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
An Algebraic Derivation of Chao’s Estimator of the Number of Species in a Community Highlights the Condition Allowing Chao to Deliver Centered Estima…
2014
Anne Chao proposed a very popular, nonparametric estimator of the species richness of a community, on the basis of a limited size sampling of this community. This expression was originally derived on a statistical basis as a lower-bound estimate of the number of missing species in the sample and provides accordingly a minimal threshold for the estimation of the total species richness of the community. Hereafter, we propose an alternative, algebraic derivation of Chao’s estimator, demonstrating thereby that Chao’s formulation may also provide centered estimates (and not only a lower bound threshold), provided that the sampled communities satisfy a specific type of SAD (species abundance dist…
An algebraic continuous time parameter estimation for a sum of sinusoidal waveform signals
2016
In this paper, a novel algebraic method is proposed to estimate amplitudes, frequencies, and phases of a biased and noisy sum of complex exponential sinusoidal signals. The resulting parameter estimates are given by original closed formulas, constructed as integrals acting as time-varying filters of the noisy measured signal. The proposed algebraic method provides faster and more robust results, compared with usual procedures. Some computer simulations illustrate the efficiency of our method. Copyright © 2016 John Wiley & Sons, Ltd.
Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data
2013
International audience; In this paper, we apply an algebraic method to estimate the amplitudes, phases and frequencies of a biased and noisy sum of complex exponential sinusoidal signals. Let us stress that the obtained estimates are integrals of the noisy measured signal: these integrals act as time-varying filters. Compared to usual approaches, our algebraic method provides a more robust estimation of these parameters within a fraction of the signal's period. We provide some computer simulations to demonstrate the efficiency of our method.
Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data
2012
International audience; The amplitude, frequency and phase of a biased and noisy sum of two complex exponential sinusoidal signals are estimated via new algebraic techniques providing a robust estimation within a fraction of the signal period. The methods that are popular today do not seem able to achieve such performances. The efficiency of our approach is illustrated by several computer simulations.
QuBiLS-MAS, open source multi-platform software for atom- and bond-based topological (2D) and chiral (2.5D) algebraic molecular descriptors computati…
2017
Background In previous reports, Marrero-Ponce et al. proposed algebraic formalisms for characterizing topological (2D) and chiral (2.5D) molecular features through atom- and bond-based ToMoCoMD-CARDD (acronym for Topological Molecular Computational Design-Computer Aided Rational Drug Design) molecular descriptors. These MDs codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph-theoretical electronic-density and edge-adjacency matrices in order to consider atom- and bond-based relations, respectively. These MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications ranging from antimalarials…
Projective models of K3 surfaces with an even set
2006
The aim of this paper is to describe algebraic K3 surfaces with an even set of rational curves or of nodes. Their minimal possible Picard number is nine. We completely classify these K3 surfaces and after a carefull analysis of the divisors contained in the Picard lattice we study their projective models, giving necessary and sufficient conditions to have an even set. Moreover we investigate their relation with K3 surfaces with a Nikulin involution.
Automorphisms of 2–dimensional right-angled Artin groups
2007
We study the outer automorphism group of a right-angled Artin group AA in the case where the defining graph A is connected and triangle-free. We give an algebraic description of Out.AA/ in terms of maximal join subgraphs in A and prove that the Tits’ alternative holds for Out.AA/. We construct an analogue of outer space for Out.AA/ and prove that it is finite dimensional, contractible, and has a proper action of Out.AA/. We show that Out.AA/ has finite virtual cohomological dimension, give upper and lower bounds on this dimension and construct a spine for outer space realizing the most general upper bound. 20F36; 20F65, 20F28
Algebras of unbounded operators and physical applications: a survey
2009
After a historical introduction on the standard algebraic approach to quantum mechanics of large systems we review the basic mathematical aspects of the algebras of unbounded operators. After that we discuss in some details their relevance in physical applications.